domingo, 9 de agosto de 2009

Corriente Alterna (CA) o (AC)

Corriente alterna

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinusoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.
Historia
En el año 1882 el físico, matemático, inventor e ingeniero Nikola Tesla, diseñó y construyó el primer motor de inducción de CA. Posteriormente el físico William Stanley, reutilizó, en 1885, el principio de inducción para transferir la CA entre dos circuitos eléctricamente aislados. La idea central fue la de enrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo se obtuvo lo que sería el precursor del actual transformador. El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla; la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron en el desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), el cual es un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia, comercializado en su día con gran agresividad por Thomas Edison.
La primera transmisión interurbana de la corriente alterna ocurrió en 1891, cerca de Telluride, Colorado, a la que siguió algunos meses más tarde otra en Alemania. A pesar de las notorias ventajas de la CA frente a la CC, Thomas Edison siguió abogando fuertemente por el uso de la corriente continua, de la que poseía numerosas patentes (véase la guerra de las corrientes). De hecho, atacó duramente a Nikola Tesla y a George Westinghouse, promotores de la corriente alterna, a pesar de lo cual ésta se acabó por imponer. Así, utilizando corriente alterna, Charles Proteus Steinmetz, de General Electric, pudo solucionar muchos de los problemas asociados a la producción y transmisión eléctrica, lo cual provocó al fin la derrota de Edison en la batalla de las corrientes, siendo su vencedor George Westinghouse, y en menor medida, Nikola Tesla.
Corriente alterna frente a continua
La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico de forma cómoda y segura.

Parámetros característicos de una onda senoidal
A0 es la amplitud en voltios o amperios (también llamado valor máximo o de pico),
ω la pulsación en radianes/segundo,
T el tiempo en segundos o Periodo, y
β el ángulo de fase inicial en radianes.
F=1/T donde f es la frecuencia en hercios (Hz) y equivale a la inversa del período . Los valores más empleados en la distribución son 50 Hz y 60 Hz.
F=1/T =Hz
El Valor eficaz o Vrms este valor, es el que produce el mismo efecto calorífico que su equivalente en corriente continua. Matemáticamente, el valor eficaz de una magnitud variable con el tiempo se obtiene de la siguiente forma, Dividiendo el Voltaje Pico entre la raizcuadrada de 2 (o elevando 2 a la potencia 1/2)
Vrms=Ao/(2^1/2)






No hay comentarios:

Publicar un comentario